Significant Findings Statement

35 GHz Measurements of CO; Crystals for Simulating Observations of the Martian
Polar Caps

J. L. Foster, A. T. C. Chang, D. K. Hall, A. B. Tait, and J. S. Barton

Question: Using a 35 GHz hand-held radiometer, do dry ice (CO;) crystals scatter and
absorb passive microwave energy similarly to that of snow (H,0) crystals?

Approach: In this experiment, passive microwave radiation emanating from within a 33
cm snowpack was measured with a 35 GHz hand-held radiometer, and in addition to the
natural snow measurements, the radiometer was used to measure the microwave emission
and scattering from layers of manufactured CO; (dry ice). A 1 m x 2 m plate of aluminum
sheet metal was positioned beneath the natural snow so that microwave emissions from
the underlying soil layers would be minimized. Different layers of the snow and the dry
ice were removed and the measurements were repeated.

Significance: This study demonstrates that the dry ice brightness temperatures were
considerably lower than those of the snow crystals for two primary reasons. One, the dry
ice crystals were an order in magnitude larger than the snow crystals, and two, they were
significantly colder than the snow crystals. Large crystals, which approach the
wavelength size of the sensor, are very effective scatters of microwave radiation. The
colder physical temperature of the dry ice crystals also contributes to the lower brightness
temperatures.
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ABSTRACT

In order to learn more about the Martian polar caps, it is important to compare and
contrast the behavior of both frozen H,O and CO; in different parts of the electromagnetic
spectrum. Relatively little attention has been given, thus far, to observing the thermal
microwave part of the spectrum. In this experiment, passive microwave radiation
emanating from within a 33 cm snowpack was measured with a 35 GHz hand-held
radiometer, and in addition to the natural snow measurements, the radiometer was used to
measure the microwave emission and scattering from layers of manufactured CO, (dry
ice). A 1 m x 2 m plate of aluminum sheet metal was positioned beneath the natural snow
so that microwave emissions from the underlying soil layers would be minimized.
Compared to the natural snow crystals, results for the dry ice layers exhibit lower
microwave brightness temperatures for similar thicknesses, regardless of the incidence
angle of the radiometer. For example, at 50° H (horizontal polarization) and with a
covering of 21 cm of snow and 18 cm of dry ice, the brightness temperatures were 150 K
and 76 K, respectively. When the snow depth was 33 cm, the brightness temperature was
144 K, and when the total thickness of the dry ice was 27 cm, the brightness temperature
was 86 K. The lower brightness temperatures are due to a combination of the lower
physical temperature and the larger crystal sizes of the commercial CO; crystals compared
to the snow crystals. As the crystal size approaches the size of the microwave wavelength,
it scatters microwave radiation more effectively, thus lowering the brightness temperature.
The dry ice crystals in this experiment were about an order of magnitude larger than the
snow crystals and three orders of magnitude larger than the CO; crystals produced in the
cold stage of a scanning electron microscope. Spreading soil, approximately 2 mm in
thickness, on the dry ice appeared to have no effect on the brightness temperatures.

Key words: ices, Mars surface, Mars climate, Earth.



1.0 Introduction

The most recent measurements made from the Mars Global Surveyor Mission using laser
altimetry methods (Mars Orbital Laser Altimeter, MOLA), indicate that the residual
northern cap of Mars has an average thickness of 1.03 km and may have a maximum
thickness of 3 km (Smith et al., 1998; Zuber et al., 1998). For the seasonal pack, the
thickness may be about 1 m at higher latitudes (north of 60 degrees). Although at lower
latitudes (50-60 degrees), or near the southern margin of the cap, the accumulation is
possibly less than 1 cm. Hess et al. (1979) have estimated that the thickness of the
seasonal snow layers (consisting of frozen H,O and frozen CO, ) to be a few tens of
centimeters. If this is so, the thickness is only somewhat less than terrestrial accumulations

of seasonal snow, which at sea level rarely exceed a meter over extended areas.

In terms of remotely sensing the Martian seasonal and permanent ice caps, relatively little
attention has been thus far given to observing the thermal microwave part of the spectrum.
The microwave region contributes little to the total radiation budget of Earth or Mars,
compared to the ultraviolet, visible and infrared wavelengths. However, because ice
crystals appreciably scatter and absorb (depending on the crystal size) upwelling
microwave radiation emanating from the Earth at frequencies above about 10 GHz,
microwave radiometry offers the potential to assess the thickness and the extent of the
Martian seasonal caps using remote sensing techniques. An advantage of using this

approach is that microwaves are indifferent to daylight and darkness. Therefore, the



thickness and extent of the caps can be estimated even during the polar night period.

(Foster et al., 1998).

Although much of what is known about the composition and structure of the Martian
polar caps is a result of laboratory work and modeling, in the microwave region of the
spectrum, there is a need to conduct basic experiments related to how microwaves are
scattered and or absorbed by accumulations of CO, crystals having various sizes. A
problem, of course, with experimental measurements, is how to make them under
conditions which are analogous to the conditions expected on Mars. Otherwise, the results
may not fully explain what is observable on Mars. Nonetheless, initial experiments with
preliminary findings are useful for helping to design further experiments and to validate

modeling results.

The purpose of this paper is to measure the passive microwave brightness temperatures at
35 GHz (~0.8 cm), using a hand-held radiometer, of dry ice crystals and to compare these
measurements with snow (H,O) measurements. The CO; brightness temperatures will be
modeled, using a discrete dipole scattering model, and compared to the radiometric
observations. Unfortunately, there are no direct (in situ) Viking Lander measurements of
the Martian polar caps, and there are few orbital measurements (either from the Mariner,
Mars, Phobos or even Pathfinder missions), that can be used as a standard of reference for
comparison with the laboratory measurements of CO, crystals and the modeling results on

CO; extinction efficiency described in this paper. However, the measured response from



dry ice can be compared with the modeled results to assess whether or not the model can

be used to accurately gage the extinction of CO; and H,O crystals having different sizes.

2.0 Passive Microwave Radiometry

The microwave radiation emitted by a covering of H,O or CO, snow is dependent upon
the physical temperature, crystal characteristics and the density of the snow. A basic
relationship between these properties and the emitted radiation can be derived by using the
radiative transfer approach. The lack of precise information about crystal size, shape and
the snowpack density is compensated for by using averages for these parameters, based on
field and laboratory observations. For computational purposes, assumptions are made that
the averages are representative of conditions encountered throughout the snowpack.
These quantities are then used as input to radiative transfer equations to solve the energy
transfer through the snow covering. If the assumptions about the averages differ
substantially from actual observations, then poor values of the thickness of the covering,

or in the case of snow, the snow water equivalent will result (Foster et al. 1998).

Microwave emission from a snow layer over a ground medium consists of contributions
from the snow itself and from the underlying ground. Both contributions are governed by
the transmission and reflection properties of the air-snow and snow-ground boundaries
and by the absorption/emission and scattering properties of the snow layers. If the
snowpack is thick (> penetration depth of the wavelength) then it may be treated as a
semi-infinite medium and contributions from the ground will not be as important (Chang

et al., 1976).



As an electromagnetic wave emitted from the underlying ground propagates through the
snowpack, it is scattered by the randomly-spaced snow particles in all directions.
Consequently, when the wave emerges at the snow/air interface, its amplitude has been
attenuated, and thus the brightness temperature is low. Dry snow absorbs very little
microwave energy, and therefore it contributes very little in the form of self-emission
(Ulaby and Stiles, 1981; Foster et al., 1984). For snowpacks on Earth, snow crystals are
effective scatterers of microwave energy for frequencies greater than about 10 GHz. The
snow crystals redistribute part of the cold sky radiation, which reduces the upwelling
radiation measured wifh a radiometer (Schmugge, 1980). The deeper the snow, the more
snow crystals are available to scatter the upwelling microwave energy, and thus it is

possible to estimate the depth of the snow and the snow water equivalent.

The difference in brightness temperature between the18 GHz and the 37 GHz microwave
frequencies has been used to derive snow depth for a uniform snowfield. The Chang et al.

(1987) algorithm is expressed as follows:
SD= C(T18 -T37)

where SD is snow depth in centimeters, T is the brightness temperature in degrees K and

C is a coefficient related to grain size. If T18 < T37, the snow depth is zero.



An evaluation of the various algorithms that have been used to derive snow parameters
shows that only those algorithms including 37 GHz frequencies provide adequate
agreement with the manually measured snow depth values. Use of the 18 GHz frequency
helps to eliminate the effects of the snow and ground temperatures and the atmospheric

quantities (integrated water vapor and clouds) on changes in T (Chang et al., 1987).

How closely packed the particles are to each other (density) is related to the path length of
the radiating energy, and is thus important in terms of scattering potential. While field
measurements of snow density are routinely made, this parameter is difficult to extract
using remote sensing technology. A representative value of 300 kg m” is typically
assumed in developing algorithms for mid-latitude snowpacks in mid-winter (Foster et al.
1998). This value varies in response to the water content of the snow, and thus it can
change (increase) even if the depth of the snowpack remains fairly constant. For CO,
snowpacks, a density value of about 1067 kg m™ has been estimated by a number of
authors, including Yamada and Person (1964), Seiber et al. (1971), and (Tsujimoto et al.

(1983).

Large snow crystals are especially effective scatters of microwave energy (Hall, et al.,
1986; Armstrong et al., 1993). Foster et al. (1997) have shown that for snow, the shape of
the crystal is insignificant, in comparison to the size of the crystal and the spacing between
the crystals, in scattering the microwave radiation emanating from the ground and passing

through the snowpack. In the above equation “C” will be smaller with a larger crystal



size. For example, if the average crystal radius is 0.3 mm, C is 1.59, and if the radius is 0.5

mm, C is 0. 39 (Foster et al. 1998).

For H,O ice, the complex index of refraction is 1.78 for the real part and 0.0024 for the
imaginary part (Chang et al., 1987). Absorption of microwave energy by dry snow crystals
is very small, about 10 ° times smaller than for water in the liquid phase (Ulaby and Stiles,

1981).

Only a few measurements are available of either the dielectric or the refractive index for
frozen CO; ; for example Seiber et al. (1971), Warren (1986) and Hansen (1997) or for
clathrate ices (Gough and Davidson, 1973). In the microwave portion of the spectrum,
Simpson et al. (1980) obtained a dielectric constant of 2.25 for frozen CO; in the
frequency range between 2.2 and 12 GHz, for a density of 1400 kg m ~ and for
temperatures between 113 and 183 K. Estimating an uncertainty of about 10% in their
value for the dielectric constant, gives a refractive index of 1.5 (+ or - 0.1). The loss
tangent, represented by the imaginary part of the refractive index, is listed as < 0.004
throughout this same frequency range. The same authors made less accurate
measurements for both the real and imaginary part of the index of refraction, out to 50
MHz which suggest that the above values are valid (Warren, 1986). For temperatures
greater than 77 K, Warren (1986) showed that away from the absorptive bands, the
refractive index varies only from 1.40 at 1 pum to 1.44 at microwave frequencies. At 1000
GHz, Hansen gets a real value of 1.444 and an imaginary value of 0.0048 (Hansen, 1997).

Because no Debye relaxation absorption is expected in the microwave region, the
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imaginary index should be very low since CO; is not a polar molecule (Hansen, personal

communication).

Methodology

An out-of-doors site was deemed necessary for this experiment because the numerous
thermal emission sources in an indoor cold laboratory (walls, tables, etc.) would
contaminate the microwave measurements. Measurements were made in the northern
plains of North Dakota during the week of February 8, 1998 at a site near Grand Forks,
North Dakota. Though the snowpack exceeded 30 cm at the site we selected, and the
temperatures were below 0 © C, for this time of year in North Dakota, the snowpack
thickness was below normal and the weather conditions were mild. The underlying
vegetation consisted of a mixture of grasses. At the time of the experiment, the sky was in

complete overcast, but no precipitation was reported.

To conduct this experiment we required approximately 300 lbs of dry ice pellets which
were purchased from a nearby commercial supplier. This type of commercially available
frozen CO; is produced by compressing and then rapidly expanding CO, gas. Liquid CO,
is allowed to expand by reducing its pressure to sea level atmospheric pressure (~1013
mb). This spontaneously converts the liquid to both a gas and a solid. If the expansion
occurs in a cold chamber, the snow, which represents approximately 40% of the liquid
conversion, can be compacted to conform to the chamber shape and size. The most

common forms of manufactured dry ice are pellets and solid blocks.
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A 1 m by 2 m plate of aluminum sheet metal was positioned beneath the natural snow so
that microwave emissions from the underlying soil layers would be minimized. 35 GHz
measurements of this plate were made through the 33 cm snowpack (Figure 1).
Measurement units are in volts. Voltages were later converted to brightness temperatures.
Natural snow layers, corresponding to snowfalls earlier in the season, were removed and
measurements were repeated for the diminishing snowpack until the bare sheet metal plate
was in view. Then, 9 cm of CO; crystals were deposited onto the plate, and as was the
case for the natural snow, hand-held measurements were made each time the thickness of
the deposit was altered. These CO; crystals were approximately 0.60 cm in diameter and
were cylindrical in shape (Figure 2). The temperature of the dry ice was -76 ° C, whereas
the temperature at the top of the snowpack was -1.9 ° C (the air temperature was -3 ° C).
Two additional 9 cm increments were placed on top of the existing CO, crystals, resulting
in a total thickness of 27 cm of dry ice. Because of the difficulty of working with the dry
ice pellets, it was decided that three separate 9 cm deposits of the dry ice would be made

rather than trying to match the exact thickness of the natural snow layers.

After this series of measurements was made, the CO, crystals were then placed on top of
the snowpack, and as before, measurements were made using the 35 GHz radiometer. As
a final part of this experiment, soil particles were spread on top of the dry ice, and once

again, microwave measurements were made with the 35 GHz radiometer. Selected hand-

held radiometer measurements are shown in Table 1.
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The natural dry ice crystal shape is typically pseudo-octahedral, where two four-sided .
pyramids share a common base. Specifically this type of crystal is known as a tetragonal -
ditetragonal bipyramid. Although the dry ice crystals used in this experiment were
manufactured to be in the shape of cylindrical pellets, the shape of the crystal has been

shown to have little effect on microwave scattering (Foster et al., 1997).

4.0 Modeling

Modeling provides a means to gage the efficacy of using passive microwave remote
sensing to estimate CO, thickness. As mentioned previously, it is impractical to use a
microwave radiometer to make measurements in a laboratory setting because background

emission would corrupt the measurements.

A particle scattering model was used to assess the scattering properties of the large dry ice
pellets. In this experiment, crystals were modeled having an effective radius (radii of a
sphere of equal volume) of 500, 1,000, 5,000, and 10,000 um (0.6 cm). The discrete
dipole scattering (DDSCAT) model employed here is a Fortran program which calculates
scattering and absorption of electromagnetic radiation by arbitrary targets using the
discrete dipole approximation (DDA). With this approximation, the targets are replaced by
an array of point dipoles. The electromagnetic scattering problem for the arrays is then
solved, essentially exactly (Draine, 1988 and updated in Draine and Flatau, 1994; Foster et

al., 1997).
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According to Draine (personal communication) DDSCAT can be used for any isotropic
material. Even if the material is anisotropic, it can be used providing that certain dielectric
tensor conditions are satisfied. For best results, the dielectric constant should not be too
large (< ~ 4). DDSCAT is a versatile program and has been used to address scattering
from materials such as snow, ammonia or interstellar dust (Draine, 1988; West et al.,
1989). The program code incorporates Fast Fourier Transform methods (Goodman et al.,

1991).

For this investigation, the wavelength chosen is 8500 um (0.85 cm), corresponding to a
frequency of 35 GHz. It has been demonstrated (Chang et al., 1987) that for a snowpack
less than a meter in depth, more information about the snow water equivalent and
thickness can be derived when using a frequency of about 35 GHz than when using higher
or lower frequencies. For the refractive index of frozen CO,, a value of 1.42 was used for
the real part and 0.005 was used for the imaginary part. Three different target orientations
with calculations for two incident polarizations states are available with this model. Here,
randomly oriented dipoles are specified. Scattering intensities are computed for two
scattering planes at intervals of 30 degrees in the scattering angle theta; phi = 0 for the x-y
plane, and phi = 90 for the x-z plane. The true thickness of a deposit is not required for
emission boundary conditions; scattering or absorption results from the array of point

dipoles (Foster et al., 1998).

Table II gives values for extinction, absorption and scattering efficiency of frozen carbon

dioxide crystals for different particle sizes using a frequency of 35 GHz and a refractive
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index of 1.44 +.0005 (Hansen, personal communication). For comparison purposes, Table
III gives extinction, absorption and scattering values, as modeled for H,0 crystals. This

comparison is shown as a plot in Figure 3.

5.0 Discussion

For small crystals, such as those produced in the cold stage of a scanning electron
microscope (SEM), it has been shown by Foster et al. (1998) that for the smallest particles
(< ~.300 mm), absorption values are greater than are scattering values at the microwave
frequencies. For this experiment, the dry ice crystals were three orders of magnitude larger
than the ones produced in the cold stage of the SEM. Although, not shown here, only
small differences exist for the various particle shapes (other than those than in Tables II

and III) and orientations as well.

The size of the crystal affects scattering considerably more than it does absorption, at a
frequency of 35 GHz, for both CO, and H,O crystals. Scattering dominates over
absorption for the larger sizes of the modeled crystals since the particles approach the size
of the wavelength (Mie scattering). For instance, the scattering values are an order of

magnitude larger than absorption for the range of H,O particles listed in Table III.

Referring to Figure 3, notice, however, that extinction decreases with crystal size for the
largest crystals (10,000 pm). According to Tables II and III, extinction, absorption and

scattering each decrease from 5,000 pm to 10,000 um. This is especially noticeable for the
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tetrahedron crystals (Table II). When the particle size is greater than the wavelength
(8,100 um), extinction no longer increases but rather oscillates (Ulaby at al, 1981).
Calculations of the attenuation cross sections of large ice and water spheres have shown
that the normalized attenuation cross section increases up to a size parameter (a) of 1, and
then from there decreases to a size parameter of 5 (Atlas and Wexler, 1963; Battan,

Browning and Herman, 1970).

Compared to natural snow crystals, the dry ice crystals exhibited lower brightness
temperatures. This is attributed to 1) greater scattering effects and 2) colder physical
temperatures of the dry ice. Because the dry ice crystal sizes are about an order of
magnitude larger than the largest snow crystals, the scattering is greater and hence the
brightness temperatures are lower. For instance, with a thickness of 21 cm of snow on
the aluminum plate and with an incidence angle of 50 degrees (horizontal polarization), the
brightness temperature was 150 K, whereas for the dry ice, the brightness temperature
registered 76 K with a thickness of 18 cm on the plate. For a depth of 33 cm of snow, the
brightness temperature was 144 K. This compares to a brightness temperature of 86 K
when 27 cm of dry ice was placed on top of the aluminum plate. The physical temperature
of the snow surface was — 3 © C, however, the temperature of the dry ice was —76 ° C.
Since brightness temperature is a function of both the emissivity and physical temperature
of a material, the colder temperature of the dry ice accounts for some of the difference in

the brightness temperature between the water snow and CO; snow.
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Figure 4 shows the 35 GHz brightness temperatures of both water and CO, snow for
various depths over the aluminum plate. Notice that for the water snow, the brightness
temperatures decrease between depths of 33 cm and 21 cm — when the snow surface was
measured at its full depth and then again when 9 cm were removed from the top of the
pack. This is probably a result of the frozen nature of this uppermost snow layer. Melt and
freeze events occurring several weeks after snow had fallen to form this layer, resulted in
the formation of a surface crust (ice lens), which acted not to scatter the passive

microwave radiation but to absorb it instead.

It should also be pointed out that the brightness temperature of the dry ice decreases
gradually with increasing thickness. From 27 cm to 9 cm the TB decreases by only 32 ° K
(< 2 degree K per cm). This demonstrates that the temperature of the dry ice is largely
responsible for the low TBs, otherwise volume scattering by the large dry ice crystals
would significantly lower the TB with increasing thickness. For particles the size of the
dry ice crystals used in this experiment, nearly all of the scattering would be expected to

occur in the upper 0.5 meter of the snowpack (either CO, or H,O snowpacks).

On Mars, even though frozen CO; is isothermal, gradients could exist between the surface
(ground) and the overlying-layer of the seasonal CO, snowpack and between the CO,
snowpack and the atmosphere. Because much of the atmospheric CO, is depleted when
frozen CO, exists on the surface, the vapor pressure gradient may be sufficiently large so
as facilitate the growth of larger crystals. In the 2.0 - 4.0 um part of the spectrum,

reflectance models by Calvin (1990) and Calvin and Martin (1994), and albedo models by
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Hansen and Martin (1993) show that equivalent CO; grain sizes may be very large, on the
order of a few mm to a cm, and that polar cap spectra in this wavelength range are
dominated by absorption. In the microwave region, such large crystals would dominate

scattering and cause lower than expected brightness temperatures (Foster et al., 1998).

In order to derive a reliable measure for the thickness of CO; deposits by utilizing passive
microwave techniques, either the size of the scatterers or the density of the CO, snowpack
must be known with a high degree of accuracy. Geographic location, the time of year,
elevation, and wind are several of the many controls affecting crystal size and density.
From the above discussion, it is likely that the CO; crystals on the surface of Mars range in
size from microns to millimeters. It may be possible to retrieve more precise grain size
information for the polar caps of Mars using laser altimetry (from MOLA). Because both
H,0 and CO; reflectance is sensitive to grain size at the MOLA wavelengths, the potential

exists to determine the sizes of water ice and carbon ice grains (Nolin, 1998).

On Earth, the density is greater in regions where the mean wind velocities are higher
because winds promote saltation, which causes the edges and ends of the crystals to break
off. The result being that the particles are more spherical and smaller, and thus packing is
more easily facilitated. For example, Grenfell and Warren (1994) have shown that the
snow grain sizes (radii) near the South Pole in Antarctica are typically less than 0.150 mm,
at depths 10 cm below the surface. Recall that for a mid-winter mid-latitude snowpack,

grain sizes are on average approximately 0.3 mm.
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This may be the case on Mars as well, however, the low atmospheric density, and the fact
that CO; crystals are not dendritic (they do not have a large number of protuberances
which can be easily worn down) may keep snowpack densities on Mars from increasing
appreciably as the winter season progresses. Additionally, lack of a liquid phase on Mars

prevents density from increasing in the spring period, as it does for snowpacks on Earth.

It may be found that specific geographic or climatic regions on Mars have a predisposition
for having crystals with certain sizes and densities. For example, near the margins of the
northern cap, the thickness of the pack is estimated to be on the order of millimeters.
Because the thickness along the margins or boundaries of a snowcap are expected to be
small, it is probable that the particle size and density in these locations will-be similar from
one year to another, even if the boundary itself has migrated somewhat over a period of
several years. Therefore, regardless of the amount of variation that exists in particle size
and density globally on Mars, there is a potential for developing algorithms which are

applicable for specific regions.

As discussed in Foster et al. (1998), if the Martian polar caps are annealed or at least
partially annealed, volume scattering by discrete particles (snow crystals) would not apply.
For conditions analogous to the polar firn in Greenland and Antarctica, where there may
be tens or hundreds of dense horizontal layers, each a few centimeters thick and
characterized by its own density, temperature and grain size distribution, the use of dense
media models prove to be more reliable in modeling the emerging microwave radiation

and in thus, estimating the thickness (Tsang and Ishimaru, 1985; West, 1994). Dense
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media microwave scattering (at 37 GHz) is sensitive to both volume inhomogeneities,
such as ice grains, and to abrupt changes in the dielectric constant at the interfaces

between layers with differing densities (Matzler, 1987).

Finally, in our admittedly rather feeble attempt to simulate a sullied Martian snowpack, a
thin layer of soil particles (approximately 2 mm thick) were scattered on top of the heap of
CO; crystals. It can be seen from Table I that this was of little consequence to the
microwave brightness temperatures. In the microwave portion of the spectrum, dry soil
has a high emissivity and refractive index compared to that of snow. The volume of snow
crystals (whether composed of H,O or CO), and the resulting scattering of microwave
energy, overwhelms the emission from the thin layer of soil particles added to the top of

the snowpack.

5.0 Conclusions and Future Plans

In this study it was found that compared to natural snow crystals, the dry ice crystals
exhibited lower brightness temperatures. This is attributed to both the greater scattering of
the larger CO; crystals, which are about an order in magnitude larger than the largest
snow crystals, and the colder physical temperatures of the dry ice. For instance, with a
thickness of 33 cm of snow over an aluminum plate and with an incidence angle of 50
degrees (horizontal polarization), the brightness temperature was 144 K, whereas for the
dry ice, the brightness temperature registered 86 K with a thickness of 27 cm over the

plate.
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During the winter of 1999, and again in 2000, similar experiments will be conducted but
with differently-sized CO; crystals. Our intent is to mass- produce crystals smaller (< 5
mm in radius) than the manufactured dry ice used in this study. We would like to be able
to construct an artificial CO, snowpack having larger crystals at the bottom and smaller
crystals at the surface. It would be useful to measure crystals of various sizes with the 35
GHz hand-held radiometer and, in addition, to use another radiometer tuned to a higher

(85 GHz) frequency.
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TABLE 1

Dry Ice Experiment

February 1998

Grand Forks, North Dakota
Open site — short grass prairie
Skies are overcast

Air temperature = -3.0°C
Snow temperature = -1.9°C

Stage 1
Sheet metal plates are inserted under the

snowpack.

Snow depth = 33cm
TBn = 145.2K  N=nadir
TBson = 144K

TBsov = 153K

TBaon = 128.4K

TBaov = 150K

Stage 2
A layer of snow is removed.

Snow depth = 20cm
TBn = 155.4K
TBson = 150K

TBsov = 156K

TBaon = 140.4K
TBaov = 145.2K

Stage 3
Another layer of snow is removed.

Snow depth = 6cm
TBn = 96.6K
TBson = 105.6K
TBsov = 117.6K
TBaon = 97.2K
TBaov = 97.2K

Stage 4
All the snow is removed (metal plates are

showing).

Snow depth = Ocm
TBn = 16.2K
TBson = 19.8K
TBsov = 25.2K
TBson = 9K

TBav = 12K

Stage 5
Dry ice pellets are added onto the plates.

Dry ice temperature = -76°C
Dry ice depth = 9cm

TBn = 75K

TBson = 57.6K

TBsov = 61.2K

TBjon = 60.6K

TB30V = 59.4K

Stage 6
More dry ice is added.

Dry ice depth = 18cm
TBn = 89.4K

TBson = 75.6K

TBsov = 81.6K

TBson = 75K

TB3ov = 79.2K

Stage 7
More dry ice is added.

Dry ice depth = 27cm
TBn = 96.6K

TBson = 85.8K

TBsov = 90K

TBaon = 83.4K

TBaov = 83.4K

Stage 8
Dry ice pellets placed on top on an

undisturbed snowpack nearby (snow depth
= 23cm, dry ice depth = 18cm).

TBn = 199.8K

TBson = 178.8K

TBsov = 191.4K

TBgon = 191.4K

TBagy = 192.6K

Stage 9
Soil is scattered on top of the dry ice.

TBn = 204K
TBson = 179.4K
TBsov = 188.4K
TBaon = 189K
TBagv = 195K




Table 2
Extinction Efficiency, absorption, and scattering for carbon dioxide crystals.
The refractive index is 1.44+0.005i and the wavelength is 0.81 ¢cm (35 GHz)

Size Parameter (o) = 2nr/A

[Size (um)] __Shape | Size Param. Qext Q abs |Q sca
500  |Cylinder 0.388 8.089E-03| 4.182E-03| 3.907E-03 |
500 |Sphere 0.388 8.631E-03| 4.388E-03| 4.242E-03
500 |Tetrahedron| 0.388 9.541E-03| 4.828E-03| 4.713E-03
1000 [Cylinder 0.776 6.568E-02| 9.749E-03| 5.593E-02
1000 |Sphere 0.776 7.640E-02| 1.029E-02| 6.611E-02

1000 |Tetrahedron| 0.776 8.652E-02] 1.122E-02| 7.530E-02
5000 |[Cylinder 3.879 | 3.968E+00| 9.646E-02| 3.872E+00
5000 |Sphere 3.879 | 3.997E+00| 9.093E-02| 3.906E+00
5000 |Tetrahedron| 3.879 | 2.019E+00| 1.242E-02| 2.007E+00
10000 [Cylinder 7.757 | 2.525E+00| 1.496E-01] 2.375E+00
10000 |Sphere 7.757 | 2.344E+00| 3.942E-02| 2.305E+00
10000 |Tetrahedron| 7.757 6.655E-01| 2.667E-04| 6.651E-01




Table 3
Extinction efficiency, absorption, and scattering from water crystals.

The refractive index is 1.78+0.0024i and the wavelength is 0.81 cm (35 GHz)

Size Parameter (o) = 2rtr/A

Size (um)] Shape [ Size Param. ext abs Q sca
500 |Cylinder 0.388 1.176E-02] 1.621E-03| 1.014E-02
500 |Sphere 0.388 1.307E-02} 1.735E-03| 1.134E-02
500 [Hexagon 0.388 1.310E-02| 1.775E-03| 1.133E-02
1000 Cylinaer 0.776 1.998E-01]4.259E-02| 1.572E-01
1000 |Sphere 0.776 2.395E-01[ 4.572E-02{ 1.938E-01
1000 |Hexagon 0.776 2.352E-01| 4.658E-02 | 1.887E-01
5000 [Cylinder 3.879 2.255E+00( 4.736E-01| 1.782E+00
5000 |Sphere 3.879 3.585E+00{ 5.455E-01| 3.040E+00
5000 Hexag_;on i79 3.408E+00] 4.681E-01| 2.940E+00
10000 |[Cylinder 7.757 2.025E+00[ 1.382E-01| 1.887E+00
10000 |]Sphere 7.757 1.945E+00] 5.826E-02| 1.887E+00
10000 Hexa_g_;on 7.757 2.337E+00] 1.111E-01]2.226E+00
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